

# "Hacia el vertido cero de residuos municipales con aprovechamiento energético"













Departamento de Ingenierías Química y Biomolecular Universidad de Cantabria Grupo de Desarrollo de Procesos Químicos y Control de Contaminantes (DePRO)



# Presentación del grupo



# UNIVERSIDAD DE CANTABRIA



UNIDAD DE SOSTENIBILIDAD DE LA PRODUCCIÓN EN CANTABRIA

GRUPO DE DESARROLLO DE PROCESOS QUÍMICOS Y CONTROL DE CONTAMINANTES

LÍNEA DE INVESTIGACIÓN:

CARACTERIZACIÓN, CONTROL Y GESTIÓN DE RESIDUOS INDUSTRIALES

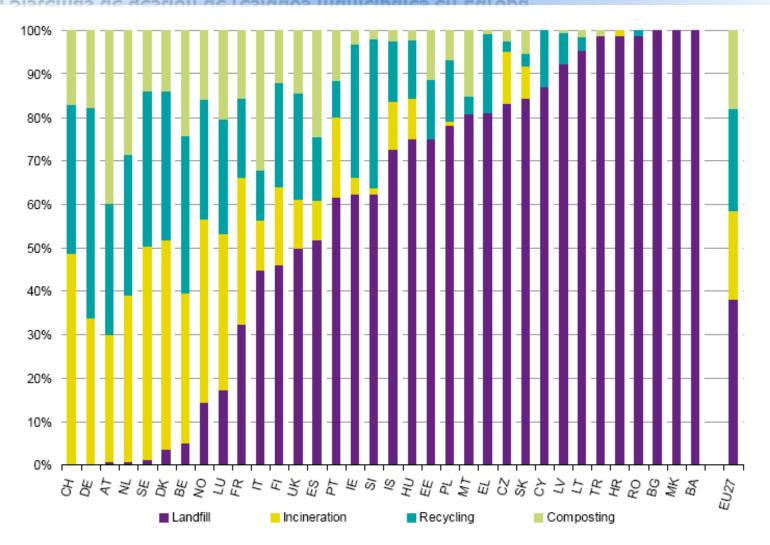
# **Índice**

## Introducción

- 1. Residuos sólidos generados
  - Escorias
  - Cenizas volantes
- 2. Alternativas de gestión
- 3. Alternativas de valorización
  - Tratamientos existentes
- 4. Situación actual

# **Conclusiones**




# **Introducción**

### 1. Marco normativo de la gestión de residuos

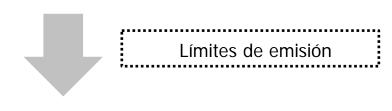


# **Introducción**

# 2. Sistemas de gestión de residuos municipales en Europa

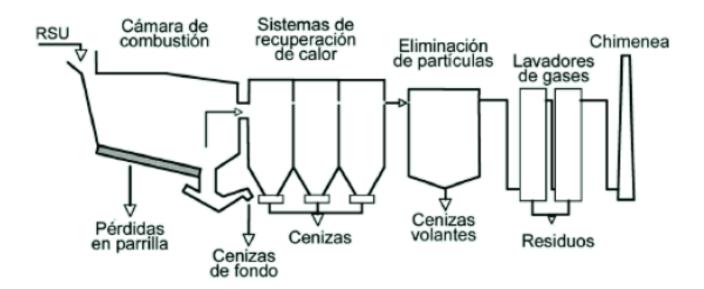


Fuente: EUROSTAT,2009


# **Introducción**

### 3. Ventajas de la valorización energética




Directiva 2010/75/UE emisiones industriales

RD 815/2013 de emisiones industriales



**NUEVOS RESIDUOS SÓLIDOS** 

### 1. Puntos de generación y tipo de residuos sólidos generados



### Escorias o cenizas de fondo

■ 18 % en peso de entrada en planta

### Materiales férreos

■ 2 % en peso de entrada en planta

### **Cenizas volantes**

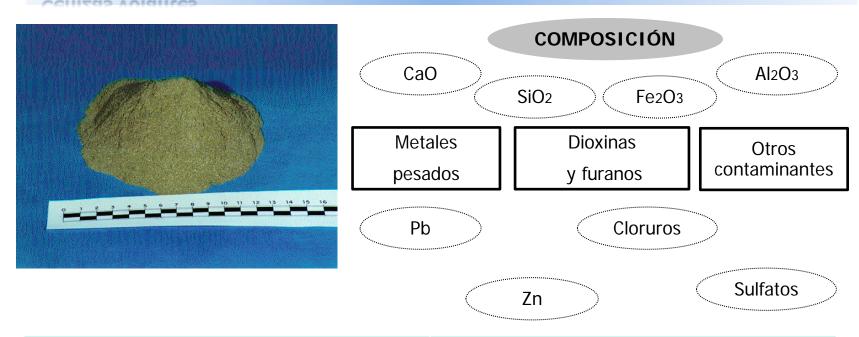
■3-5 % del peso de entrada en planta

- 1. Cenizas
- 2. Cenizas volantes
- 3. Residuos del sistema de control de gases

# 2. Producción de escorias y cenizas en Europa

| PAÍSES       | Nº DE<br>PLANTAS | Escorias<br>(t/año) | Cenizas<br>(t/año) |
|--------------|------------------|---------------------|--------------------|
| Francia      | 130              | 3.000.000           | 317.000            |
| Alemania     | 67               | 4.350.000           | 720.000            |
| Italia       | 51               | -                   | -                  |
| Suecia       | 30               | 600.000             | 180.000            |
| Suiza        | 29               | 675.000             | 70.000             |
| Dinamarca    | 29               | 498.000             | 90.000             |
| Noruega      | 20               | -                   | -                  |
| Gran Bretaña | 20               | -                   | -                  |
| Bélgica      | 16               | 325.000             | 100.000            |
| Holanda      | 11               | 1.200.000           | 150.000            |
| España       | 10               | 358.419             | 94420              |

Fuente: CEWEP, 2007


### Escorias o cenizas de fondo



| Código LER | <b>Identificación</b>                                                                       |
|------------|---------------------------------------------------------------------------------------------|
| 190112     | "Cenizas de fondo de horno y escorias distintas de las especificadas en el código 19 01 11" |

RESIDUO NO PELIGROSO

### **Cenizas volantes**



| Código LER | <b>Identificación</b>                                  |
|------------|--------------------------------------------------------|
| 190113*    | "Cenizas volantes que contienen sustancias peligrosas" |

**RESIDUO PELIGROSO** 

# 2. Alternativas de gestión

¿Residuo a desechar o material valorizable?

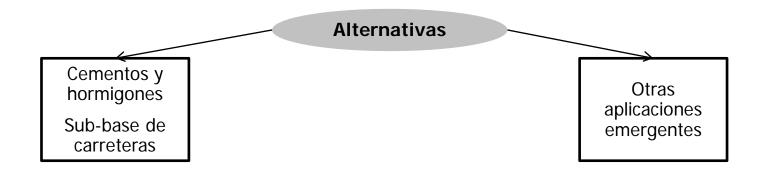
### **RESIDUO**

Coste

MATERIAL VALORIZABLE



- 1. Depósito en vertedero
- 2. Tratamiento para depósito en vertedero
- 3. Evolución del residuo a largo plazo


- 1. Que cumpla todos los requisitos relativos a los productos
- 2. Que cumpla todos los requisitos pertinentes a la protección de la salud humana y del medio ambiente sin que produzca impactos adversos
- 3. Que haya demanda para su utilización

# 2. Alternativas de gestión

# 1. Depósito en vertedero



### 2. Valorización



# 2. Alternativas de gestión

# Aspectos a tener en cuenta para valorización

Residuos muy heterogéneos

Análisis de cada residuo

Cumplimiento especificaciones técnicas

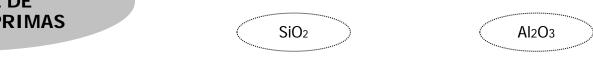
+

Requisitos para la protección ambiental y de la salud humana

Tratamientos disponibles

Térmicos

Separación


E/S

Demanda



#### 1. Materiales de construcción

### SUSTITUCIÓN PARCIAL DE MATERIAS PRIMAS



CaO

- ■Diferentes tipos de cementos
  - Áridos para hormigón
  - ■Sub-base de carreteras
- Otros materiales de construcción (terraplenes)



- 1. Se evita el depósito en vertedero
  - 2. Se evitan emisiones
- 3. Menor uso de materias primas



Fe<sub>2</sub>O<sub>3</sub>

- 1. Comportamiento a largo plazo
- 2. Optimización de mezclas para cada aplicación
  - 3. Escorias altamente expansivas (problemas técnicos)

#### 1. Materiales de construcción

### **ESPAÑA**

Orden de 15 de febrero de 1996 (Cataluña)

- Condiciones que deben cumplir las escorias para ser valorizables
- Usos a los que pueden destinarse
  - ■Condiciones para dichos usos
    - ■Define límites de lixiviación

Plan Nacional Integrado de Residuos para el período 2008-2015.

 Correcta gestión ambiental de los residuos generados en la valorización energética (escorias y cenizas), en particular, valorización de las escorias

# **EUROPA FRANCIA** Legislación que regula el **DINAMARCA HOLANDA** uso de escorias de incineración **ALEMANIA** Basado en criterios de lixiviación

Diferentes límites, normas y filosofías



# 3. Tratamientos disponibles - Separación

| Tipo de<br>tratamiento        | Objetivo                                        | Variables                                                            | Desventajas                                   |
|-------------------------------|-------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|
| Lavado                        | Sales, cloruros,<br>álcalis, metales<br>pesados | T <sup>a</sup> , pH, ratio L/S,<br>tipo de líquido<br>(agua o ácido) | Tratamiento del<br>líquido de lavado          |
| Lixiviación                   | Metales pesados<br>(recuperación)               | pH, ratio L/S, tipo<br>de solvente                                   | Diferente<br>comportamiento<br>de los metales |
| Tratamiento<br>electroquímico | Metales pesados<br>(recuperación)               | Potencial aplicado                                                   | Baja eficiencia,<br>coste de la<br>energía    |

Separación magnética Separación mediante hidrociclón

# 4. Tratamientos disponibles - Térmicos

| Tipo de<br>tratamiento | Ta           | Proceso                                                          | Producto<br>final                                    |
|------------------------|--------------|------------------------------------------------------------------|------------------------------------------------------|
| Vitrificación          | 1000-1500 °C | Aditivos para<br>fijar los<br>contaminantes<br>a la matriz final | Homogéneo y<br>amorfo                                |
| Fusión                 | 1000-1500 °C | Sin adición                                                      | Multifásico                                          |
| Sinterización          | 900-1000°C   | Calentamiento<br>hasta<br>reorganización<br>de las fases         | Más denso,<br>menor<br>porosidad y<br>más resistente |



- Descomposición dioxinas, furanos y otros compuestos tóxicos orgánicos
- Menor lixiviación de metales
  - ■Posibilidad de valorización

■Coste energía

Tecnología de plasma

Tecnología de microondas

# 5. Tratamientos disponibles – E/S

| Tipo de<br>tratamiento    | Tipo de reactivo                                           | Ejemplos                                                                       | Objetivo                                                                      |
|---------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Solidificación            | Aglomerante<br>Inorgánico/<br>Orgánico                     | Cemento, cal,<br>puzolanas, yeso,<br>termoplásticos,<br>polímeros<br>orgánicos | Encapsular<br>físicamente<br>contaminantes                                    |
| Estabilización<br>química | Oxidantes,<br>reductores,<br>reactivos de<br>precipitación | Agentes<br>quelantes,<br>fosfatos, sulfuros                                    | Transformar los contaminantes en formas químicas más estables o menos tóxicas |



■Procesos conocidos y sencillos

■Comportamiento a largo plazo?

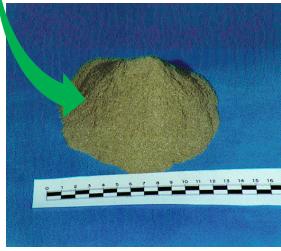
# 6. Otros tratamientos disponibles

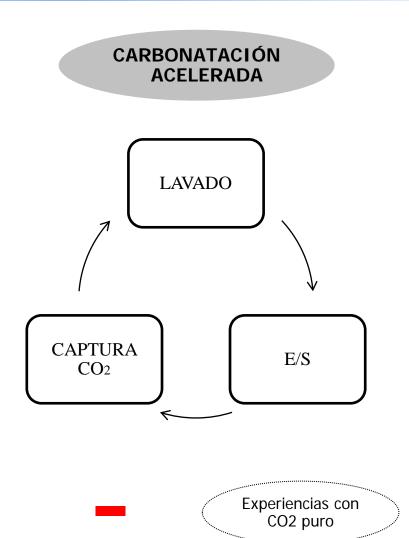
### **COMBINACIONES**

1. LAVADO + E/S

Menor cantidad de aglomerante

Mayor proporción de residuo en la mezcla Mayor durabilidad


2. LAVADO + TÉRMICO


Menor temperatura necesaria 3.ESTABILIZACIÓN QUÍMICA + SOLIDIFICACIÓN

Mejor comportamiento a largo plazo

# 7. Otros tratamientos disponibles







# 4. Situación actual

# Gestión Actual en Europa

| País      | Reutilización<br>escorias<br>Objetivo % | Reutilización<br>escorias<br>Situación real % | Reutilización<br>cenizas<br>Situación real % |
|-----------|-----------------------------------------|-----------------------------------------------|----------------------------------------------|
| Dinamarca | 85                                      | 98                                            | -                                            |
| Francia   | -                                       | 72                                            | -                                            |
| Holanda   | 100                                     | 67                                            | 20-30                                        |
| Alemania  | -                                       | 65                                            | -                                            |

Valorización cenizas

Fase de investigación

Fuente: ISWA (2006)

**CEDEX (2011)** 

### Gestión Actual en España

Escorias

Depósito en vertedero

Cenizas volantes

Tratamiento E/S

Depósito en vertedero

# **Conclusiones**

- √ Valorizar los residuos de incineración:
  - ■Evita el depósito en vertedero
  - Influye en el balance energético
  - ■Disminuye el uso de recursos naturales
  - Disminuye emisiones

### ✓ Necesidad de:

- Marcar objetivos de valorización de escorias
- Mayor uniformidad en Europa en cuanto a condiciones ambientales y especificaciones a cumplir por los materiales valorizados
- Mayor desarrollo de alternativas de valorización en fase de estudio







Chemical and Biomolecular Engineering Department
University of Cantabria (Spain)
Development of Chemical Processes and Pollutants Control
Research Group (DePRO)



<<Cada generación debe gestionar sus propios residuos sin dejar a futuras generaciones aspectos ambientales sin resolver>>